38 research outputs found

    Age-Optimal Updates of Multiple Information Flows

    Full text link
    In this paper, we study an age of information minimization problem, where multiple flows of update packets are sent over multiple servers to their destinations. Two online scheduling policies are proposed. When the packet generation and arrival times are synchronized across the flows, the proposed policies are shown to be (near) optimal for minimizing any time-dependent, symmetric, and non-decreasing penalty function of the ages of the flows over time in a stochastic ordering sense

    Implementation of Distributed Time Exchange Based Cooperative Forwarding

    Full text link
    In this paper, we design and implement time exchange (TE) based cooperative forwarding where nodes use transmission time slots as incentives for relaying. We focus on distributed joint time slot exchange and relay selection in the sum goodput maximization of the overall network. We formulate the design objective as a mixed integer nonlinear programming (MINLP) problem and provide a polynomial time distributed solution of the MINLP. We implement the designed algorithm in the software defined radio enabled USRP nodes of the ORBIT indoor wireless testbed. The ORBIT grid is used as a global control plane for exchange of control information between the USRP nodes. Experimental results suggest that TE can significantly increase the sum goodput of the network. We also demonstrate the performance of a goodput optimization algorithm that is proportionally fair.Comment: Accepted in 2012 Military Communications Conferenc

    Age Optimum Sampling in Non-Stationary Environment

    Full text link
    In this work, we consider a status update system with a sensor and a receiver. The status update information is sampled by the sensor and then forwarded to the receiver through a channel with non-stationary delay distribution. The data freshness at the receiver is quantified by the Age-of-Information (AoI). The goal is to design an online sampling strategy that can minimize the average AoI when the non-stationary delay distribution is unknown. Assuming that channel delay distribution may change over time, to minimize the average AoI, we propose a joint stochastic approximation and non-parametric change point detection algorithm that can: (1) learn the optimum update threshold when the delay distribution remains static; (2) detect the change in transmission delay distribution quickly and then restart the learning process. Simulation results show that the proposed algorithm can quickly detect the delay changes, and the average AoI obtained by the proposed policy converges to the minimum AoI
    corecore